分区

首页 > 百科 > 回归分析主要研究什么关系?回归分析是研究变量之间的什么关系

回归分析主要研究什么关系?回归分析是研究变量之间的什么关系

最佳回答2022-11-25

回归分析主要研究因变量(目标)和自变量(预测器)之间的关系。在大数据分析中,回归分析是一种预测性的建模技术,这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。

回归分析主要研究什么关系

有的人简单的把回归分析当做研究事物的因果关系式,把自变量当成因,把因变量当成果,这是不严谨的,本质上回归分析只是研究变量间的相互依存关系,至于这种依存关系是不是因果关系还需要严格控制其余条件后进行验证。

回归分析主要研究什么关系

回归分析的应用非常广泛。作为一个严肃的统计学模型,它有着严格的适用条件,在拟合时需要不断的对这些适用条件进行判断。但是根据经验,许多研究者在做回归时常常忽略这些问题,直接就用数据做分析,这是不对的,这不仅浪费了信息,还有可能得出错误的结论。

回归分析主要研究什么关系?

在统计学中,回归分析主要研究两种或两种以上变量间相互依赖的定量关系。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。回归分析的应用:相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。

比如说,从相关分析中可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。

回归分析是研究变量之间的什么关系

相信很多人也有这样的疑问,既然都是研究变量间的关系,已经进行过相关分析为什么还要使用回归分析呢?相关与回归的区别其实,相关分析与回归分析的研究目的并不相同。相关分析用于描述变量之间是否存在关系,而回归分析则是研究影响关系情况,反映一个X或者多个X对Y的影响程度。

因而分析时首先应该确定研究变量之间是否存在关系,即先进行相关分析。当两个变量之间存在显著的关联时,再进行回归分析。有了相关关系,才可能有回归影响关系,如果没有相关关系,那么也不应该有影响关系。清楚了相关与回归的区别,我们开始正式介绍今天的主角——回归分析01 回归分析概念回归分析用于研究变量之间的影响关系情况,同时也可用于估计与预测。

比如,分析消费者对某产品购买意愿的影响因素;或者研究员工敬业度与工作绩效之间的关系;也或者根据学生以往的成绩进行成绩预测等。02操作步骤案例:为研究在线学习课程满意度的影响因素,收集300份数据,将平台交互性、教学资源、课程实施、课程设计共四个因素作为自变量,将学生满意度作为因变量,利用回归分析方法进行分析(涉及题目均采用李克特五级量表)。首先,通过相关分析已经得出平台交互性、教学资源、课程实施、课程设计共四个因素与满意度均有着显著的正相关关系。

因此,将4个变量均纳入模型分析。SPSSAU分析界面这里可以选择是否保存残差和预测值,可用于检验回归模型构建情况和预测分析如果X为定类数据,直接放入模型时,一般是不会对其进行分析,而仅仅是作为控制变量纳入模型。如果想对其进行分析,则需要进行虚拟变量设置。

(设置路径:数据处理→生成变量→虚拟变量)03 结果分析线性回归结果第一步:首先对模型整体情况进行分析包括模型拟合情况(R²),是否通过F检验等。由上图可知,模型R²值为0.402,意味着平台交互性,教学资源,课程设计,课程实施可以解释学生在线学习课程满意度的40.2%变化原因。回归模型通过F检验(F=49.628,P<0.05),说明至少一个变量会对满意度产生影响关系。

第二步:分析X的显著性分析X的显著性(P值),如果呈现出显著性,则说明X对Y有影响关系。如果不显著,则应剔除该变量。可以看到,四个解释变量对满意度的显著性分析P值均小于0.05,说明X对Y均有显著性影响关系。第三步:判断X对Y的影响关系方向及影响程度结合回归系数B值,对比分析X对Y的影响程度。

B值为正数则说明X对Y有正向影响,为负数则说明有负向影响。通过回归系数来看,模型中四个解释变量的B值分别为0.1
10.0.150、0.27
1.0.07
9.�说明平台交互性,教学资源,课程设计,课程实施对满意度均呈现出显著的正向影响关系。

什么是回归分析?回归分析有什么用?主要解决什么问题?

回归分析,也有称曲线拟合.当在实验中获得自变量与因变量的一系列对应数据,(x1,y1),(x2,y2),(x3,y3),...(xn,yn)时,要找出一个已知类型的函数,y=f(x) ,与之拟合,使得实际数据和理论曲线的离差平方和:∑[yi-f(xi)]^2(从i=1到i=n相加)为最小.这种求f(x)的方法,叫做最小二乘法。

回归分析是什么意思?

回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的变量的多少,分为一元回归和多元回归分析。

这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。回归分析注意问题:
1.定性分析是前提在应用相关和回归分析时,一般分为定性分析和定量分析两个阶段,其中定性分析虽然并不复杂,但也及其重要。通过定性分析,可以判明分析的变量之间是否存在相互依存关系,而后才能转入定量分析。

需要指出的是,不能不加分析地,将两个变量凑合在一起进行定量分析,这样往往会得出虚假相关的结论。
2.确定变量是关键回归分析是用于分析一个事物如何随其他事物的变化而变化,因此在进行回归分析时,十分关键的一步就是,确定哪个事物是需要解释的,即哪个变量是被解释变量(记为y),哪些事物是用于解释其他变量的,即哪些变量是解释变量(记为x)。
3.选用函数有讲究为了反映解释变量和被解释变量之间的有机联系,在回归分析中有多种可供选择的函数,即定量分析数学表达式。

这里就涉及到如何根据变量之间的客观联系来选用正确的函数这个问题。通常在专业知识和理论以及实践经验的基础上,还需借助相关图法(比如观察散点图),来判明相关和回归的性质,寻找合适的回归线,然后选用正确的数学表达式。

什么是回归分析?主要内容是什么

回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,分为回归和多重回归分析;按照自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多重线性回归分析。

回归分析的内容和步骤是什么?


1.确定变量:明确定义了预测的具体目标,并确定了因变量。 如果预测目标是下一年的销售量,则销售量Y是因变量。


2.建立预测模型:依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
3.进行相关分析:回归分析是因果因素(自变量)和预测因子(因变量)的数学统计分析。 只有当自变量和因变量之间存在某种关系时,建立的回归方程才有意义。 因此,作为自变量的因子是否与作为因变量的预测对象相关,程度的相关程度以及判断相关程度的程度是在回归分析中必须解决的问题。

相关分析通常需要相关性,并且相关度系数用于判断自变量和因变量之间的相关程度。
4.计算预测误差:回归预测模型是否可用于实际预测取决于回归预测模型的测试和预测误差的计算。 回归方程只能通过回归方程作为预测模型来预测,只有当它通过各种测试且预测误差很小时才能预测。


5.确定预测值:利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。扩展资料:回归分析的应用:
1.相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。

比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。
2.一般来说,回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。

继续浏览:

上一篇:坪洲岛在哪里?LOOK|香港最小离岛

下一篇:金华火腿怎么做?金华火腿最简单的做法大全

推荐问答

最新问答

免责声明:本站部分内容由用户自行上传,如权利人发现存在误传其作品,请及时与本站联系。

冀ICP备13011313号-3