因式分解方法有几种?因式分解12种方法
因式分解方法:
1、提公因式法
几个多项式的各项都含有的公共的因式叫做这个多项式各项的公因式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
2、公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
平方差公式:a²-b²=(a+b)(a-b);
完全平方公式:a²±2ab+b²=(a±b)²;
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数的积的2倍。
3、待定系数法
例如,将ax2+bx+c因式分解,可令ax2+bx+c=0,再解这个方程。如果方程无解,则原式无法因式分解;如果方程有两个相同的实数根(设为m),则原式可以分解为(x-m)2如果方程有两个不相等的实数根(分别设为m,n),则原式可以分解为(x-m)(x-n)。
4、十字相乘法
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。

因式分解
把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

原则1、分解因式是多项式的恒等变形,要求等式左边必须是多项式;2、分解因式的结果必须是以乘积的形式表示;3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;5、结果的多项式首项一般为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;6、括号内的首项系数一般为正;7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。
因式分解有哪几种方法?
1.提公因式法几个多项式的各项都含有的公共的因式叫做这个多项式各项的公因式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
2.公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。平方差公式:a²-b²=(a+b)(a-b);完全平方公式:a²±2ab+b²=(a±b)²;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数的积的2倍。
3.待定系数法例如,将ax2+bx+c因式分解,可令ax2+bx+c=0,再解这个方程。如果方程无解,则原式无法因式分解;如果方程有两个相同的实数根(设为m),则原式可以分解为(x-m)2如果方程有两个不相等的实数根(分别设为m,n),则原式可以分解为(x-m)(x-n)。
4.十字相乘法十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。扩展资料:因式分解与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。
在数学上可以证明,对于一元三次方程和一元四次方程,也有固定的公式可以求解。只是因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。
对于五次以上的一般多项式,已经证明不能找到固定的因式分解法,五次以上的一元方程也没有固定解法。如果多项式的首项为负,应先提取负号;这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
因式分解12种方法
因式分解12种方法 因式分解12种方法?在解决数学问题的时候,很多人都会用到因式分解法,因式分解法是很多高等数学的基础。我已经为大家搜集和整理好了因式分解12种方法的相关信息,一起来了解一下吧。
方法详解:1.提公因法,如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
2.应用公式法,由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
3.分组分解法,要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)。
4.十字相乘法,对于mx +px+q形式的多项式,如果a×b=m, c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)。
5.配方法,对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
6.拆、添项法,可以把多项式拆成若干部分,再用进行因式分解。
7.换元法,有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
8.求根法,令多项式f(x)=0,求出其根为x , x , x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )。
9.图象法,令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x , x , x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )。
10.主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
1
1.利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 1
2.待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 因式分解12种方法2 因式分解的`概念是什么? 因式分解指的是把一个多项式分解为几个整式的积的形式,它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.
1.提公因式法 ①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。
②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.。
因式分解的方法有几种
因式分解有以下12种方法1. 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例
1. 分解因式x -2x -x(2003淮安市中考题) x -2x -x=x(x -2x-1)
2. 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例
2.分解因式a +4ab+4b (2003南通市中考题) a +4ab+4b =(a+2b)
3. 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例
3.分解因式m +5n-mn-5m m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n)
4. 十字相乘法 对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例
4.分解因式7x -19x-6 分析:1 -3 7 2 2-21=-19 7x -19x-6=(7x+2)(x-3)
5.配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例
5.分解因式x +3x-40 解x +3x-40=x +3x+( ) -( ) -40 =(x+ ) -( ) =(x+ + )(x+ - ) =(x+8)(x-5)
6.拆、添项法 可以把多项式拆成若干部分,再用进行因式分解.例
6.分解因式bc(b+c)+ca(c-a)-ab(a+b) bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)
7. 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例
7.分解因式2x -x -6x -x+2 2x -x -6x -x+2=2(x +1)-x(x +1)-6x =x [2(x + )-(x+ )-6 令y=x+ ,x [2(x + )-(x+ )-6 = x [2(y -2)-y-6] = x (2y -y-10) =x (y+2)(2y-5) =x (x+ +2)(2x+ -5) = (x +2x+1) (2x -5x+2) =(x+1) (2x-1)(x-2)
8. 求根法 令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例
8.分解因式2x +7x -2x -13x+6 令f(x)=2x +7x -2x -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9. 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x ) 例
9.因式分解x +2x -5x-6 令y= x +2x -5x-6 作出其图象,见右图,与x轴交点为-3,-1,2 则x +2x -5x-6=(x+1)(x+3)(x-2)
10. 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例
10.分解因式a (b-c)+b (c-a)+c (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b) =(b-c) [a -a(b+c)+bc] =(b-c)(a-b)(a-c) 1
1. 利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例1
1.分解因式x +9x +23x+15 令x=2,则x +9x +23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=3×5×7 注意到多项式中最高项的系数为1,而
3.
5.7分别为x+1,x+3,x+5,在x=2时的值 则x +9x +23x+15=(x+1)(x+3)(x+5) 1
2.待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例1
2.分解因式x -x -5x -6x-4 分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.设x -x -5x -6x-4=(x +ax+b)(x +cx+d) = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd 所以 解得 则x -x -5x -6x-4 =(x +x+1)(x -2x-4)
因式分解有几种方法?
定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。方法:1.提公因式法。
3.分组分解法。4.凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)]5.组合分解法。6.十字相乘法。7.双十字相乘法。8.配方法。9.拆项补项法。
10.换元法。11.长除法。12.求根法。
13.图象法。14.主元法。15.待定系数法。
16.特殊值法。17.因式定理法。
因式分解的常用方法
因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等方法有以下几种:1 提公因式法,如果一个多项式的各项都含有公因式,就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式比如分解因式x3-2x2-x=x(x2-2x-1)。2 分组分解法3 应用公式法,由于分解因式与整式乘法有着互逆的关系,把乘法公式反过来就可以用来把某些多项式分解因式。
因式分解的十二种方法
因式分解方程是我们解决许多数学问题的有力工具。接下来的内容是初二数学知识点之因式分解方程。
分解因式与整式乘法为相反变形。 同时也是解一元二次方程中公式法的重要步骤1.因式分解方程与解高次方程有密切的关系。对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。在数学上可以证明,对于一元三次和一元四次方程,也有固定的公式可以求解。
只是因为公式过于复杂,在非专业领域没有介绍。对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。对于五次以上的一般多项式,已经证明不能找到固定的因式分解方程法,五次以上的一元方程也没有固定解法。
2 、所有的三次和三次以上多项式都可以因式分解方程。这看起来或许有点不可思议。比如X^4+1,这是一个一元四次多项式,看起来似乎不能因式分解方程。
但是它的次数高于3,所以一定可以因式分解方程。如果有兴趣,你也可以用待定系数法将其分解,只是分解出来的式子并不整洁。 3 、因式分解方程虽然没有固定方法,但是求两个多项式的公因式却有固定方法。
因式分解方程很多时候就是用来提公因式的。寻找公因式可以用辗转相除法来求得。标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以比较笨,但是有效地解决找公因式的问题。 方法 因式分解方程没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。 注意三原则 1.分解要彻底(是否有公因式,是否可用公式) 2.最后结果只有小括号 3.最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1)) 4.最后结果每一项都为最简因式 归纳方法: 1.提公因式法。 2.公式法。 3.分组分解法。
4.凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)] 5.组合分解法。 6.十字相乘法。 7.双十字相乘法。
8.配方法。 9.拆项补项法。 10.换元法。
11.长除法。 12.求根法。 13.图象法。
14.主元法。 15.待定系数法。 16.特殊值法。 17.因式定理法。
温馨提示:在高等数学上因式分解方程有一些重要结论,在初等数学层面上证明很困难,但是理解很容易。 初中数学知识点总结:平面直角坐标系 下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。 平面直角坐标系 平面直角坐标系: 在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。 平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合 三个规定: ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向 ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。 ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。 相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成 对于平面直角坐标系的构成内容,下面我们一起来学习哦。 平面直角坐标系的构成 在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。 通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。 。
推荐问答
免责声明:本站部分内容由用户自行上传,如权利人发现存在误传其作品,请及时与本站联系。
冀ICP备13011313号-3