三角形的重心怎么求?三角形重心怎么求
三角形的重心:数学上的重心是指三角形的三条中线的交点,其证明定理有燕尾定理或塞瓦定理,应用定理有梅涅劳斯定理、塞瓦定理。

三角形的重心证明:已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。 重心证明1:燕尾定理:S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。证明2:塞瓦定理:如图1,在△ABC中,AD、BE、CF是中线,则AF=FB,BD=DC,CE=EA。∵(AF/FB)*(BD/DC)*(CE/EA)=1∴AD、BE、CF交于一点即三角形的三条中线交于一点。

重心的几条性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:1。2.重心和三角形3个顶点组成的3个三角形面积相等。3.重心到三角形3个顶点距离的平方和最小。4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。5.重心是三角形内到三边距离之积最大的点。6.三角形ABC的重心为G,点P为其内部任意一点,则3PG²=(AP²+BP²+CP²)-1/3(AB²+BC²+CA²)。7.在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,则 AB/AP+AC/AQ=38.从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(AB²+BC²+CA²)为半径的圆周上。9、G为三角形ABC的重心,P为三角形ABC所在平面上任意一点,则PA²+PB²+PC²=GA²+GB²+GC²+3PG²。
三角形重心公式
1.�
三角形重心怎么求
三角形三边中线的交点叫做三角形的重心。取三角形的三边的中点,联结各边的中点与其对角的顶点,三线相交于一点,这点就是重心。
2.三角形内到三边距离之积最大的点。
3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数。
4.重心到三角形3个顶点距离平方的和最小。
5.重心和三角形3个顶点组成的3个三角形面积相等。
三角形的重心怎么求
重心:首先你要知道什么是重心,通常会听到人们说,没有了重心就容易摔交.而三角形的重心就是一个三角形内部的点,并且可以可以给予它运动时平衡的点.也就是说,只要我找到了一个三角形的重心,我就可以用一个轴穿过它然后让它平衡的转动.但是三角形永远不是圆形,还是有缺点,在告诉旋转的图形中只有圆形才是最稳定的.因为三角形的比重不均匀,会在高速旋转中在空间的不同角落,相成零质量点.重心也非常的好找,只要两部就行了,第一:用一根绳子系住三角形的一个顶点,然后将其悬起,在三角形上顺着绳子划一条线,第二:再取一个顶点,按照上面的方法做,找两条线的交点.重心歌重心三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.推荐问答
免责声明:本站部分内容由用户自行上传,如权利人发现存在误传其作品,请及时与本站联系。
冀ICP备13011313号-3