分区

首页 > 百科 > 负数的意义?负数的意义是什么

负数的意义?负数的意义是什么

最佳回答2022-12-21

负数的意义:比0小的数叫负数,负数与正数表示意义相反的量。两个负数比较大小,绝对值大的反而小。负数可以广泛应用于温度、楼层、海拔、支出/收入、水位等方面中。

负数的意义

负数是数学术语,比0小的数叫做负数,负数与正数表示意义相反的量。负数用负号“-”和一个正数标记,如−2,代表的就是2的相反数。于是,任何正数前加上负号便成了负数。一个负数是其绝对值的相反数。在数轴线上,负数都在0的左侧,最早记载负数的是我国古代的数学著作《九章算术》。两个负数比较大小,绝对值大的反而小。

负数的意义

负数都比零小,则负数都比正数小。零既不是正数,也不是负数。负数中没有最小的数,也没有最大的数。去除负数前的负号等于这个负数的绝对值。如-2、-5.33、-45等:-2的绝对值为2,-5.33的绝对值为5.33,-45的绝对值为45等。

负数的意义

负数是数学术语,比0小的数叫做负数,负数与正数表示意义相反的量。负数用负号“-”和一个正数标记。

负数使用的意义 负数可以广泛应用于温度、楼层、海拔、水位、盈利、增产/减产、支出/收入、得分/扣分等等的这些方面中。 在国外,负数出现得很晚,直至公元1150年(比《九章算术》成书晚1千多年),印度人巴土卡洛首先提到了负数,而且在公元17世纪以前,许多数学家一直采取不承认的态度。如法国大数学家韦达,尽管在代数方面做出了巨大贡献,但他在解方程时却极力回避负数,并把负根统统舍去。 有许多数学家由于把零看作"没有",他们不能理解比"没有"还要"少"的现象,因而认为负数是"荒谬的"。

直到17世纪,笛卡儿创立了坐标系,负数获得了几何解释和实际意义,才逐渐得到了公认。 负数的引进,是我国古代数学家贡献给世界数学的一份宝贵财富。负数概念引进后,整数集和有理数集就完整地形成了。

负数的意义是什么?

负数是数学术语,指小于0的实数。一个负数总是某个正数的相反数。

於是,任何正数前加上负号便成了负数。一个负数是其绝对值的相反数。在数轴线上,负数都在0的左侧,所有的负数都比自然数小。

负数的意义是什么也就是负数的概念

负数是数学术语,比0小的数叫做负数,负数与正数表示意义相反的量。负数用负号“-”和一个正数标记,如−2,代表的就是2的相反数。

在算筹中规定"正算赤,负算黑",就是用红色算筹表示正数,黑色的表示负数。两个负数比较大小,绝对值大的反而小。扩展资料负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。

夏天武汉气温高达42°C,你会想到武汉的确像火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。中国人很早就开始使用负数,著名的中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数及其加减运算法则,并给出名为“正负术”的算法.魏晋时期的数学家刘徽在其著作《九章算术注》中用不同颜色的算筹(小棍形状的计数工具)分别表示正数和负数(红色为正,黑色为负.横为十,竖为个)。

负数的意义是什么

人们在生活中经常会遇到各种相反意义的量.比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食.为了方便,人们就考虑了相反意义的数来表示.于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负.可见正负数是生产实践中产生的. 据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则.人们计算的时候用一些小竹棍摆出各种数字来进行计算.比如,356摆成||| ,3056摆成等等.这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作. 我国三国时期的学者刘徽在建立负数的概念上有重大贡献.刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之.”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们. 刘徽第一次给出了正负区分正负数的方法.他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数. 我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之.”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”. 用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加.零减正数得负数,零减负数得正数.异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加.零加正数等于正数,零加负数等于负数.” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一. 用不同颜色的数表示正负数的习惯,一直保留到现在.现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱. 负数是正数的相反数.在实际生活中,我们经常用正数和负数来表示意义相反的两个量.夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷. 在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数.这种引入方法可以在某种特殊的问题情景中给出负数的直观理解.而在古代数学中,负数常常是在代数方程的求解过程中产生的.对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念.3世纪的希腊学者丢番图的著作中,也只给出了方程的正根.然而,在中国的传统数学中,已较早形成负数和相关的运算法则. 除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致.特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则.他在算法启蒙中 负数在国外得到认识和被承认,较之中国要晚得多.在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根.而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数.直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题. 与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性.1
6.17世纪欧洲大多数数学家不承认负数是数.帕斯卡认为从0减去4是纯粹的胡说.帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理.英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年).他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的.他用以下的例子说明这一点:“父亲56岁,其子29岁.问何时父亲年龄将是儿子的二倍?”他列方程56+x=2(29+x),并解得x=-2.他称此解是荒唐的.当然,欧洲18世纪排斥负数的人已经不多了.随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立.

什么是负数,负数的意义是什么?

负数 负数的简介 比零小(<0)的数.用负号(即减号)“-”标记. 如-2, -5.33, -45/77, -π. 参见:非负数(Nonnegative), 正数(Positive), 零(Zero),负号/减号(Minus Sign). 例
1.我们在小学学过自然数1,2,3,...;一个物体也没有,就用0来表示,测量和计算有时不能得到整数的 结果,这就要用分数和小数表示.同学们还见过其他种类的数吗? 现在有两个温度计,温度计液面指在0以上第6刻度,它表示的温度是6℃,那么温度计液面指在0以下第6 刻度,这时的温度如何表示呢? 提示: 如果还用6℃来表示,那么就无法区分是零上6℃还是零下6℃,因此我们就引入一种新数——负数. 参考答案: 记作-6℃. 说明: 我们为了区分零上6℃与零下6℃这一组具有相反意义的量,因而引入了负数的概念. 例
2.下面我们再看一个例子,从中国地形图上可以看到,有一座世界最高峰——珠穆朗玛峰,图上标着8844; 还有一个吐鲁番盆地,图上标着-155.你能说出它们的高度各是多少吗? 提示: 中国地形图上可以看到,上述两处都标有它们的高度的数,图上标的数表示的高度是相对海平面说的, 通常称为海拔高度.8844表示珠穆朗玛峰比海平面高8844米,-155表示吐鲁番盆地比海平面低155米. 参考答案: 珠穆朗玛峰的高度是海拔8844米; 吐鲁番盆地的高度是海拔-155米. 说明: 这个例子也说明了我们为了实际需要引入负数,是为了区分海平面以上与海平面以下高度,它们也表示 具有相反意义的量. 例
3.甲地海拔高度是35米 乙地海拔高度是15米,丙地海拔高度是-20米,请问哪个地方最高,哪个地方 最低?最高的地方比最低的地方高多少? 提示: 35米,15米,-20米分别表示什么意义? 参考答案: 甲地最高,丙地最低,最高的地方比最低的地方高55米。 说明: 35米表示高出海平面35米,15米表示高出海平面15米,-20米表示低于海平面20米,所以甲地最高, 丙地最低,且甲地比丙地高55米。

例如:零上5℃和零下6℃可记为+5℃和 -6℃;高出海平面10米和低于海平面8米可记为+10米和-8米;收入200元和支出300元可记为 +200元和-300元;前进30米和后退40米可记为+30米和-40米,请问上升7米和向东运动9米可记为 +7米和-9米吗? 提示: 上升和向东运动是具有相反意义的量吗? 参考答案: 不可以记为+7米和-9米。 说明: 具有相反意义的量必须满足两个条件:(1)它们必须是同一属性的量;(2)它们的意义相反。上升 和下降;向东运动和向西运动才是相反意义的量,因为上升和向东运动不是具有相反意义的量,所以不可 以记为+7米和-9米。 -π是超越数,不是有理数 复数的由来 人们在生活中经常会遇到各种相反意义的量。

比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。

可见正负数是生产实践中产生的。 据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。

比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。 我国三国时期的学者刘徽在建立负数的概念上有重大贡献。

刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。 刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。

我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。”这里的“名”就是“号”,“除”就是“减”,“相益”、“相除”就是两数的绝对值“相加”、“相减”,“无”就是“零”。 用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。

异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。” 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。 用不同颜色的数表示正负数的习惯,一直保留到现在。

现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。 负数是正数的相反数。在实际生活中,我们经常用正数和负数来表示意义相反的两个量。

夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。 在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。

而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。

除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。他在算法启蒙中,负数在国外得到认识和被承认,较之中国要晚得多。

在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。 与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。

1
6.17世纪欧洲大多数数学家不承认负数是数。帕斯卡认为从0减去4是纯粹的胡说。帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。

英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为�。

继续浏览:

上一篇:豪放的诗句?豪放洒脱的古代诗句

下一篇:氧气的化学性质?氧气的化学性质

推荐问答

最新问答

免责声明:本站部分内容由用户自行上传,如权利人发现存在误传其作品,请及时与本站联系。

冀ICP备13011313号-3